图卷积神经网络(持续更新)
文献分享
通用参考の交通流预测专题
- Graph convolutional networks: a comprehensive review:https://computationalsocialnetworks.springeropen.com/articles/10.1186/s40649-019-0069-y
- A Survey of Traffic Prediction: from Spatio-Temporal Data to Intelligent Transportation 通用参考の交通流预测:https://link.springer.com/article/10.1007/s41019-020-00151-z
- A Survey on Modern Deep Neural Network for Traffic Prediction: Trends, Methods and Challenges 通用参考の交通流预测:https://ieeexplore.ieee.org/document/9112608
- A Summary of Traffic Flow Forecasting Methods 通用参考の交通流预测:http://www.gljtkj.com/EN/Y2004/V21/I3/82
- A comprehensive survey on graph neural networks 通用参考の交通流预测:https://ieeexplore.ieee.org/abstract/document/9046288?casa_token=_-IU9Ixzx8kAAAAA:vcOheOMCzaaZRi5lykrhdY0CwfuoOiRU3lrdmA8uSXv1Auu8z9LrB67_JfrnSyjhoNEHbCAauz9atg
- 切比雪夫多项式(Chebyshev polynomials) 通用参考の交通流预测:https://proceedings.neurips.cc/paper_files/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
- 2023年全球道路安全状况报告(Global status report on road safety 2023) 通用参考の交通流预测:https://www.who.int/teams/social-determinants-of-health/safety-and-mobility/global-status-report-on-road-safety-2023
图嵌入
- Graph embedding techniques, applications, and performance: A survey:https://www.sciencedirect.com/science/article/pii/S0950705118301540
- A comprehensive survey of graph embedding: Problems, techniques, and applications:https://ieeexplore.ieee.org/abstract/document/8294302/?casa_token=RPHDwCwRd_sAAAAA:Us_qNvVZ0rIkhicT8MUJI87qKpF5diSGURb5rBkEtEn_Sru7qd_N5j4SESctQvL8kAM-bJLvzxQAVE8
通用参考の异常检测专题
- Detecting Road Traffic Events by Coupling Multiple Timeseries With a Nonparametric Bayesian Method:https://ieeexplore.ieee.org/abstract/document/6763098?casa_token=wPKB1S938vcAAAAA:il9gnh6pKOssqEYkYuzKor8XoYvhwYM_veqgVUjyCMoOqMMfnYtrnfnh7x4UKjw9UgsJaglC6we2nQ
- Investigating the impact of weather conditions and time of day on traffic flow characteristics:https://journals.ametsoc.org/view/journals/wcas/14/3/WCAS-D-22-0012.1.xml
- Variational Disentangled Graph Auto-Encoders for Link Prediction:https://arxiv.org/abs/2306.11315
- Graph neural networks for anomaly detection in industrial internet of things:https://ieeexplore.ieee.org/abstract/document/9471816?casa_token=c93zsFxKTZQAAAAA:Ud0fjHwZxW4orRAXglbEJnLVnZKSZJnmhwH0qH7dCGOlVBwODXGyVaD9Frzo2yV3ZOuXsCPA8FAaoA
- Perceiving spatiotemporal traffic anomalies from sparse representation-modeled city dynamics:https://link.springer.com/article/10.1007/s00779-020-01474-4
- Urban anomaly analytics: Description, detection, and prediction:https://ieeexplore.ieee.org/abstract/document/9080109/
- Graph convolutional adversarial networks for spatiotemporal anomaly detection:https://ieeexplore.ieee.org/abstract/document/9669110/
- Anomaly detection and inter-sensor transfer learning on smart manufacturing datasets:https://www.mdpi.com/1424-8220/23/1/486
- Graph neural network-based anomaly detection in multivariate time series:https://ojs.aaai.org/index.php/AAAI/article/view/16523
- GMAT-DU: Traffic anomaly prediction with fine spatiotemporal granularity in sparse data:https://ieeexplore.ieee.org/abstract/document/10061355/
- Graph anomaly detection with graph neural networks: Current status and challenges:https://ieeexplore.ieee.org/abstract/document/9906987/
- Anomaly detection with generative adversarial networks for multivariate time series:https://arxiv.org/abs/1809.04758
- A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder:https://ieeexplore.ieee.org/abstract/document/8279425/
图卷积神经网络
- GCN:https://arxiv.org/abs/1609.02907
- GAT:https://arxiv.org/abs/1710.10903
- GraphSAGE:https://proceedings.neurips.cc/paper_files/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
- GIN:https://arxiv.org/abs/1810.00826
- DeepGCN:https://arxiv.org/abs/1904.03751
- PMLP:https://arxiv.org/abs/2212.09034
- DeepGCN:http://openaccess.thecvf.com/content_ICCV_2019/html/Li_DeepGCNs_Can_GCNs_Go_As_Deep_As_CNNs_ICCV_2019_paper.html
- 图的对比(Neighbor contrastive learning on learnable graph augmentation):https://ojs.aaai.org/index.php/AAAI/article/view/26168
🔥 【强力推荐】PyTorch 的图神经网络库:https://pyg.org/