深度学习之学习路线
🏁 前言
我的研究生期间(研究方向:异常检测)深度学习的读书/学习笔记,包含
- 图形分类(入门)
- 目标识别(纯属游戏向 ➡️ 自动瞄准)
- 异常检测(交通时序)
🚠 路线推荐
机器学习 ➡️ 数据操作(推荐观看我的仓库) ➡️ 深度学习基础(推荐阅读pytorch版本《动手深度学习》:https://zh.d2l.ai/) ➡️ 深度学习基础网络【分类】(推荐观看:https://space.bilibili.com/18161609/channel/series) ➡️ 分支(看研究方向)⏫
注:个人建议《动手深度学习》不用读到基础网络(alexnet...)
📑 推荐书籍和网址
- pytorch内功修炼(Pytorch中文百科): https://www.pytorch.wiki/
- 论文理论支撑 (神经网络与深度学习):https://nndl.github.io/
- 语法精益(流畅的Python)、数据处理(深入浅出pandas)
- 奇葩review大赏(娱乐):https://shitmyreviewerssay.tumblr.com/
💨其他推荐
- Pytorch官网
- 飞桨PaddlePaddle官网
- scikit-learn中文社区
- Matplotlib: Python plotting — Matplotlib 3.4.2 documentation
- Jittor(计图): 即时编译深度学习框架 — Jittor
- Dataset Search:数据集搜索
- TensorFlow官方教程
- Keras:TF封装
- Hydra 九头蛇:简化深度学习配置
- ml-tooling/best-of-ml-python: 🏆 深度学习开源库排行榜
- NumPy 中文
- Kaggle: 深度学习竞赛
- Pillow (PIL Fork)
- 复杂网络软件 — NetworkX
- 深度学习在图像处理中的应用教程
- pandas中文教程
- External-Attention-pytorch: 🍀 现成轮子
- VIT汇总
- 深度学习500问
- 深度学习论文阅读路线图
- 深度学习论文注释实现
- 深度学习入门教程, 优秀文章
- 吴恩达深度学习课程笔记
- tensorflow2中文教程,持续更新(当前版本:tensorflow2.0)
- 初学者的TensorFlow教程和例子 (support TF v1 & v2)
- 简单且准备使用 TensorFlow 的教程
- PyTorch 对于研究人员的教程
- 吴恩达机器学习个人笔记
- Matplotlib 中文
- pytorch-image-models:PyTorch 图像模型、脚本、预训练权重
- Flops counter
- CVPR 2022 论文和开源项目合集
- PyTorch implementations of GAN:对抗神经网络合集
- the-gan-zoo: A list of all named GANs!:对抗神经网络合集
📚书
🏣社区
- Hugging Face 自然语言处理
- Sieun Park – Medium
- Distill — Latest articles about machine learning
- Towards Data Science
- Neurohive - Neural Networks
- 974 questions with answers in COMPUTER SCIENCE | Science topic
- devRant
✏️ 论文推荐阅读
图像分类(Classification)
- LeNet http://yann.lecun.com/exdb/lenet/index.html
- AlexNet http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
- ZFNet(Visualizing and Understanding Convolutional Networks) https://arxiv.org/abs/1311.2901
- VGG https://arxiv.org/abs/1409.1556
- GoogLeNet, Inceptionv1(Going deeper with convolutions) https://arxiv.org/abs/1409.4842
- Batch Normalization https://arxiv.org/abs/1502.03167
- Inceptionv3(Rethinking the Inception Architecture for Computer Vision) https://arxiv.org/abs/1512.00567
- Inceptionv4, Inception-ResNet https://arxiv.org/abs/1602.07261
- Xception(Deep Learning with Depthwise Separable Convolutions) https://arxiv.org/abs/1610.02357
- ResNet https://arxiv.org/abs/1512.03385
- ResNeXt https://arxiv.org/abs/1611.05431
- DenseNet https://arxiv.org/abs/1608.06993
- NASNet-A(Learning Transferable Architectures for Scalable Image Recognition) https://arxiv.org/abs/1707.07012
- SENet(Squeeze-and-Excitation Networks) https://arxiv.org/abs/1709.01507
- MobileNet(v1) https://arxiv.org/abs/1704.04861
- MobileNet(v2) https://arxiv.org/abs/1801.04381
- MobileNet(v3) https://arxiv.org/abs/1905.02244
- ShuffleNet(v1) https://arxiv.org/abs/1707.01083
- ShuffleNet(v2) https://arxiv.org/abs/1807.11164
- Bag of Tricks for Image Classification with Convolutional Neural Networks https://arxiv.org/abs/1812.01187
- EfficientNet(v1) https://arxiv.org/abs/1905.11946
- EfficientNet(v2) https://arxiv.org/abs/2104.00298
- CSPNet https://arxiv.org/abs/1911.11929
- RegNet https://arxiv.org/abs/2003.13678
- NFNets(High-Performance Large-Scale Image Recognition Without Normalization) https://arxiv.org/abs/2102.06171
- Attention Is All You Need https://arxiv.org/abs/1706.03762
- Vision Transformer https://arxiv.org/abs/2010.11929
- DeiT(Training data-efficient image transformers ) https://arxiv.org/abs/2012.12877
- Swin Transformer https://arxiv.org/abs/2103.14030
- Swin Transformer V2: Scaling Up Capacity and Resolution https://arxiv.org/abs/2111.09883
- BEiT: BERT Pre-Training of Image Transformers https://arxiv.org/abs/2106.08254
- MAE(Masked Autoencoders Are Scalable Vision Learners) https://arxiv.org/abs/2111.06377
- CoAtNet https://arxiv.org/pdf/2106.04803v2.pdf
目标检测(Object Detection)
- R-CNN https://arxiv.org/abs/1311.2524
- Fast R-CNN https://arxiv.org/abs/1504.08083
- Faster R-CNN https://arxiv.org/abs/1506.01497
- Cascade R-CNN: Delving into High Quality Object Detection https://arxiv.org/abs/1712.00726
- Mask R-CNN https://arxiv.org/abs/1703.06870
- SSD https://arxiv.org/abs/1512.02325
- FPN(Feature Pyramid Networks for Object Detection) https://arxiv.org/abs/1612.03144
- RetinaNet(Focal Loss for Dense Object Detection) https://arxiv.org/abs/1708.02002
- Bag of Freebies for Training Object Detection Neural Networks https://arxiv.org/abs/1902.04103
- YOLOv1 https://arxiv.org/abs/1506.02640
- YOLOv2 https://arxiv.org/abs/1612.08242
- YOLOv3 https://arxiv.org/abs/1804.02767
- YOLOv4 https://arxiv.org/abs/2004.10934
- Scaled-YOLOv4 https://arxiv.org/abs/2011.08036
- PP-YOLO https://arxiv.org/abs/2007.12099
- PP-YOLOv2 https://arxiv.org/abs/2104.10419
- YOLOX http://arxiv.org/abs/2107.08430
- CornerNet https://arxiv.org/abs/1808.01244
- FCOS https://arxiv.org/abs/1904.01355
- CenterNet https://arxiv.org/abs/1904.07850
- Mask R-CNN https://arxiv.org/abs/1703.06870)
异常检测(Anomaly Detection)
- Anomaly Transformer http://arxiv.org/abs/2110.02642
- DL-Traff http://arxiv.org/abs/2108.09091
- Generative adversarial networks in time series: A survey and taxonomy http://arxiv.org/abs/2107.11098
- Learning Graph Neural Networks for Multivariate Time Series Anomaly Detection http://arxiv.org/abs/2111.08082
- Long-Range Transformers http://arxiv.org/abs/2109.12218
- Sig-Wasserstein GANs http://arxiv.org/abs/2111.01207
Others
- Microsoft COCO: Common Objects in Context https://arxiv.org/abs/1405.0312
- The PASCALVisual Object Classes Challenge: A Retrospective http://host.robots.ox.ac.uk/pascal/VOC/pubs/everingham15.pdf
:surfer: 感谢
特别致谢以下仓库对于我学习的帮助:
WZMIAOMIAO /
深度学习在图像处理中的应用教程
《神经网络与深度学习》 邱锡鹏著
d2l-ai /《动手学深度学习》